
DDR Memory Errors caused by Row Hammer
What you don’t know CAN hurt you, why this failure mechanism is important to understand

Barbara Aichinger

Vice President New Business Development

FuturePlus Systems Corporation

Bedford, NH

Barb.Aichinger@FuturePlus.com

Abstract—DDR3 memory is at the heart of almost all cloud

computing servers today. A recently publicized failure

mechanism in DDR3 memory, coined Row Hammer, has been

shown to not only be a reliability issue but also a security risk.

No industry standards group, government agency or trade

association has signed up to address this issue. Data Centers and

end users are on their own. This paper will discuss briefly the

problem, mitigation strategies and a unique testing tool to

determine what applications have the potential to create these

types of failures.

Keywords—DDR3 Failures, DDR4, Row Hammer, Data Center

down time, DDR3 memory.

I. INTRODUCTION

Computer architecture relies on three basic building blocks,
the CPU or central processing unit, the I/O, Input and Output
and the Memory. When it comes to the memory the dominate
technology is DRAM or Dynamic Random Access Memory.
Today’s most prevalent version of memory is called DDR3
which stands for the 3

rd
 generation of Double Data Rate

Memory. In the quest to get memories smaller and faster
memory vendors have had to make very small physical
geometries. These small geometries put memory cells very
close together and as such one memory cell’s charge can leak
into an adjacent one causing a bit flip. It has come to the
attention of the industry that this is indeed happening under
certain conditions. Very simply the problem occurs when the
memory controller under command of the software causes an
ACTIVATE command to a single row address repetitively. If
the physically adjacent rows have not been ACTIVATED or
Refreshed recently the charge from the over ACTIVATED row
leaks into the dormant adjacent rows and causes a bit to flip.
This failure mechanism has been coined ‘Row Hammer’ as a
row of memory cells are being ‘hammered’ with ACTIVATE
commands. Additionally double sided Row Hammering has
also been proven. This involves two ‘aggressor’ rows on either
side of a ‘victim’ row. This double sided hammering produces
failures faster and causes more bits to flip

1
. Once this failure

occurs a Refresh command from the Memory Controller
solidifies the error into the memory cell. Current
understanding is that the charge leakage does not permanently
damage the physical memory cell which makes repeated
memory tests trying to find the failing device useless.

1
 http://googleprojectzero.blogspot.com/2015/03/exploiting-

dram-rowhammer-bug-to-gain.html

DDR3 memory is pervasive today and used in nearly all
cloud server systems, many embedded applications and
military applications. Most critical applications do use error
detection and correction, ECC. However ECC is a single bit
detection and correction and double bit detection. In the case
of more than two bit errors, which has been demonstrated with
Row Hammer failures, ECC falls short. Our dependence on
DDR3 memory and this known failure mechanism should be a
wake up call for the industry. So far the most common
workaround is to double the refresh rate to the memory. This
is an attempt to ‘charge up’ the dormant memory cells so that
they do not fall victim to adjacent rows that might become
‘hammered’. This reduces performance and increases power
consumption and the problem is not going away. This
workaround just reduces the statistical probability.

II. WHY DOES THIS HAPPEN?

Simply put, the memory controller’s job is to read and write
information to and from the memory under program control. If
the software running executes certain commands that cause
repeated accesses to a single location the memory controller
will generate excessive ACTIVATE commands. Currently
there is nothing in the DDR3 memory controller designs to
prevent this from happening. Software often uses repetitive
accesses to check to see if a task has been completed. This is a
very common occurrence in software architecture and referred
to as a Semaphore. Several tasks or threads will communicate
with each other using a shared location in the memory. Thus
they all need to repeatedly access these shared locations in
order to communicate.

Figure 1: The use of a semaphore can cause repeated

accesses to a single location in memory

Individual software instructions associated with Row
Hammer have come to light in recent studies

2
 namely the

CLFLUSH command. This forces the processor to not store
the information in cache. Thus the memory controller initiates
the page open ACTIVATE command to the main memory. As
of May 2015 several open source programs on the internet can
be downloaded, which within a few lines of code, can create
Row Hammer failures fairly quickly.

3

III. IS THE PROBLEM REAL?

Although curiously void from the JEDEC
4

 meeting
minutes prior to 2012 we do see evidence of the problem being
mentioned in the press and on the internet in early 2014.
Electronic Design has mentioned this phenomenon and IBM
has a field update to its firmware to try to deal with it. A
search of recent patent applications reveals that in January of
2014 Intel submitted two patent applications that deal with
Row Hammer. The first is a technique to detect excessive
ACTIVATES to a single row address.

Row Hammer Condition Monitoring: US 20140006704
A1. A system monitors data accesses to specific rows of
memory to determine if a Row Hammer condition exists. The
system can monitor accessed rows of memory to determine if
the number of accesses to any rows exceeds a threshold
associated with risk of data corruption on a row of memory
physically adjacent to the row with high access. Based on the
monitoring, a memory controller can determine if the number
of accesses to a row exceeds the threshold, and indicate address
information for the row whose access count reaches the
threshold.

The second Intel patent application deals with a targeted
row refresh. That is if the memory controller sees the
excessive ACTIVATE commands, below the error threshold,
it can tell the DRAM the address of that Hammered Row and
the DRAM can refresh and restore the charge to the physically
adjacent rows to avoid the problem.

Row hammer refresh command: WO 2014004748 A1. A
memory controller issues a targeted refresh command. A
specific row of a memory device can be the target of repeated
accesses. When the row is accessed repeatedly within a time
threshold (also referred to as "hammered" or a "row hammer
event"), physically adjacent row (a "victim" row) may
experience data corruption. The memory controller receives an
indication of a row hammer event, identifies the row associated
with the row hammer event, and sends one or more commands
to the memory device to cause the memory device to perform a
targeted refresh that will refresh the victim row.

In 2014 Samsung divulged the issue in a recent investors
presentation touting that its DDR4 “in-DRAM” solution is
“most efficient for Row Hammer operation”.

2
 Both the Google Blog and CMU papers referenced later in

this paper report using the CLFLUSH command to create the

failure.
3
 https://github.com/google/rowhammer-test

4
 JEDEC is the industry standards group that controls the DDR

Specification

In the summer of 2014 the most conclusive information
was published by Carnegie Mellon University researcher
Yoongu Kim. His paper ‘Flipping Bits Without Accessing
them’ gave the industry its first conclusive information proving
the failure was actually quite wide spread.

5
 Kim and his team

found the failures were across all vendors tested and were
found more frequently in DRAMs manufactured after 2010.

In March 2015 Google stepped into the Row Hammer
arena with its blog post Exploiting the DRAM rowhammer bug
to gain kernel privileges.

6
 This ignited a fire storm of technical

media press on the topic but it died out after a few weeks. The
industry now waits for a response from the memory vendors
but there has been very little.

IV. CONFUSION AND MISUNDERSTANDINGS

Given that this is a fairly technical topic those weighing in
who do not have a complete understanding have added
unreliable and misleading comments to the conversation. First
is the notion that ECC will correct this problem. The
commonly used ECC technique for DRAM memory, SECDED
is a single error bit detection and correction and a double error
bit detection. The notion that all memory errors can be
magically corrected by ECC is unfortunately a common
misconception. The uninformed think they can buy
substandard memory and motherboards as long as they have
ECC. The CMU study showed repeated row hammer failures
with multiple bits per transfer. Though the number of failures
beyond two bits was much less common it proved that ECC
could not prevent undetected data corruption for this failure
mechanism.

The Google Blog post focused on the security risk for this
problem. Since their exploits were picked up by the technical
media the reliability consequences of this failure mechanism
has taken a back seat. However the reliability issues are much
more likely to be of concern to the industry. With the number
of servers increasing daily, with some estimates saying that
there are over 50M servers world wide, it is a significant
statistical probability that DDR3 Row Hammer failures will
occur in cloud computing applications. How large? Hard to
gauge but if we go with a low end estimate of each server
having 10 DIMMs and each DIMM has 2GB capacity
(relatively small) using the CMU study failure rate of ~ 10

5
per

10
9th

 cells
7
 (10,000/1G) for the 3 major memory manufacturers

gives bit failure rates in the millions per system. As an
example a 2GB DIMM has 2x10

9
x8 cells which equals 16x10

9

and if each system has 10 DIMMs then you have 160 x10
9

memory cells per system. If the error potential is 10
4
 per 10

9

you have a potential for 1.6M errors per system if Row
Hammering were to occur.

This author is fairly certain that millions of memory
failures per system would be unacceptable for almost any

5
 http://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

6
 http://googleprojectzero.blogspot.com/2015/03/exploiting-

dram-rowhammer-bug-to-gain.html
7
 Figure 3 http://users.ece.cmu.edu/~yoonguk/papers/kim-

isca14.pdf

application. With over 50 million servers world wide the
memory failure potential goes into the billions.

Lest us not fear monger! What is unknown is does the
system have an application running that creates the Row
Hammer event. In order to understand that we would need to
study the code of every application, which would seem
impossible, or run the application on systems that employed
hardware counters to monitor the memory and count the
number of ACTIVATE commands which lead to the problem.

V. DETECTING IF APPLICATIONS CREATE THE ROW HAMMER

EVENT

It would be physically impossible to examine the actual
code running on all servers to look for the sequence of
instruction that have the potential to cause Row Hammer
failures. However if the memory could be observed while
critical applications were running or observed when
applications that have shown to be running when mysterious
memory failures occur, the analysis becomes more
manageable. Such a tool has been designed for this exact
application. A general purpose protocol analyzer, the DDR
Detective®, has been repurposed using its programmable
FPGA to count the number of ACTIVATE commands to
unique row addresses.

Some background on DDR3 memory is in order to
understand the basis for the testing. DDR3 has 8 banks per
rank and each bank containing rows and columns. For a 2GB
DIMM there are 16,384 Rows per bank with a total of 131,072
(16, 384 * 8) unique row addresses.

Figure 2: DDR3 DRAM Configuration
8

Using current FPGA technology it is impossible to create
131,072 counters thus a statistical approach to the problem
must be taken. Examining the first 1000+ unique row

8
 http://www.anandtech.com/show/3851/everything-you-

always-wanted-to-know-about-sdram-memory-but-were-

afraid-to-ask/2

addresses that are issued by the memory controller is
reasonable given the other timings that must be obeyed for a
compliant DDR3 memory channel to work. In addition only
the unique addresses that occur during a 64ms time period need
to be accumulated. After 64ms the counters can be cleared and
the hunt for new unique row addresses can be restarted.

The repurposed DDR protocol analyzer
9
 was programmed

to use 2400 counters divided into 2, 1200 counter Row
Hammer Detection Units to track every ACTIVATE by row
address that occur within an interval of 64mS, which relates to
the minimum retention period of a single location in a
synchronous DRAM. These counters are reset and reassigned
at the end of each retention period. Theses counters run
continuously and never miss an ACTIVATE command. If the
number of unique addresses exceeds the available counters a
remainder count is incremented to indicate that the traffic is
highly variable. In addition, the retention period can be
lowered to 32ms by selecting Hi Temp as this is the retention
period for high temperature operation. The retention period of
the tool is fixed in that it is not a ‘rolling’ window. To help
compensate for this the tool actually has a duplicate set of
counters offset by ½ the retention period to give better
coverage.

Figure 3: The repurposed DDR Protocol Analyzer with its

DIMM interposer

There are 2 variable threshold limits that the user can set to
flag Row Addresses that cross those limits. The output graphic
shows the rows that have seen ACTIVATE commands exceed
the threshold. Blue for Threshold 1 and red for Threshold 2.
Threshold1 and Threshold2 are defaulted to 100K and 300K
respectively and can be adjusted. The exact address of the row
address that crosses these thresholds is also listed in the right
hand side scroll pane.

The Row Hammer setup page allows the user to set an
Address Range across slots, Ranks and Banks for which the
tool will only count ACTIVATE commands to rows in this
range. By narrowing down the range it helps keep the counters
from overflowing and can give more accurate results.

9
 The DDR Detective® has its own web site

www.DDRDetective.com

Figure 4: Row Hammer Detection setup screen

An XML based report file for all ACTIVATES that cross
the thresholds can be generated.

The tool will give a trigger out 7200 cycles following an
ACTIVATE command which reaches Threshold 2 just in case
the user wants to trigger a logic analyzer to capture returning
read data to then pinpoint the exact failing bits. The size of the
Threshold counters are 21 bits.

Now the tool can look for the potential of Row Hammer
events while the server is running ANY application. The
presence of the tool is virtually invisible to the system and the
software running. The tool connects to the system using an
interposer which intercepts the signals to and from the memory
controller to the DIMM. The probing can be changed to
address embedded or memory down applications.

The Row Hammer output graphic shows a mapping by
Bank and Rank of each Row Address location that had a total
number of ACTIVATES occur over the defined Thresholds
(T1 & T2). This display is updated every second.

The Row Hammer output graphic shows Ranks in columns
and Banks in Rows, which form cells. The specific Row
Address is represented in that cell area by the first 2 nibbles
(last 2 are don’t cares) of the Address as shown below. If the
exact Address is needed it can be seen in the report window on
the right, or from a generated report.

The output graphic is refreshed every second. After the tool
is stopped each previous or successive 1 second period can be
paged through using the arrow buttons below the output
graphic. A maximum of a 120 seconds worth of traffic can be
stored.

Figure 5: Row Hammer Detection output screen shows

when a row has been ‘hammered’

Each Row Hammer Detection Unit also reports status at the
end of each retention cycle. This status would indicate how
many ACTIVATES were not counted (remainder count) and if
an overflow did not occur how many counters remained
unused.

An xml output report can also be generated that writes out
to a file all of the row addresses that exceed the threshold for
each Row Hammer detection unit.

Now critical applications can test for the presence of
excessive ACTIVATE commands caused by their application.
If applications do not create excessive ACTIVATE commands
the urgency to address the Row Hammer failure mechanism is
greatly reduced.

VI. WHAT ARE THE MITIGATION STRATEGIES?

If it can be shown that applications are creating the Row
Hammer events, mitigation strategies can now be investigated.
As previously mentioned the most common mitigation strategy
being employed today is a doubling of the Refresh rate. In
DDR3 Memory the REFRESH command is issued to the entire
RANK (half the DIMM for a 2 rank implementation). The
DRAM device itself does not refresh every row in the device
upon receiving this command. Rather it kicks off a scheduler
of sorts that has the task of making sure that all rows in the
Rank are refreshed at least once in a 64ms retention period.
Once a refresh command is issued the entire Rank becomes
unavailable for Write and Read operations. Doubling the
occurrence of refreshes not only burns additional power but is
a performance hit as the memory becomes unavailable twice as
often. This method, although widely employed, reduces the
statistically probability but does not prevent the failures

10
. The

changing of the refresh rate is usually a BIOS selection.

10

 Figure 4 http://users.ece.cmu.edu/~yoonguk/papers/kim-

isca14.pdf

The other mitigation strategy that has been discussed for
DDR3 has been what is referred to as a pseudo targeted row
refresh or pTRR. Since targeted row refresh commands are
being discussed for inclusion into DDR4 and LPDDR4 (Low
Power DDR4) in the JEDEC committees, the phrase ‘psuedo’
was derived for a backwards method to be used for DDR3
since no specific command exists in DDR3. This ‘psuedo’
technique involves the memory controller issuing a REFRESH
command and placing the ‘hammered’ row address on the
address lines. Its then up to the memory device to refresh the
victim rows which are the ones physically adjacent to the
‘aggressor’ row. Intel put this feature into their Ivy Bridge
Processor families

11
 but it is not clear if any other memory

control vendor has implemented this feature as only Intel has
revealed its implementation. This feature can only work if the
DRAMs understand this command and execute it accordingly.

Pseudo Target Row Refresh is certainly not a strategy that
will be adopted for any pre Ivy Bridge servers or servers using
a non Intel memory controller. In addition the millions if not
billions of embedded DRAM implementations cannot be
retrofitted to use either the doubling of the refresh rate or the
pTRR. This should be a wakeup call for all critical
applications using DDR3 DRAMs. Other mitigation strategies
include using DDR3 DIMMs that have been specifically tested
to be row hammer free a feat that no DRAM vendor has yet
signed up for. The most widely touted mitigation strategy by
the DRAM and system vendors is a total machine swap and
upgrade to DDR4. A profitable choice for them of course but
not at all practical for everyone else. One caveat on this last
strategy is that no test data showing that DDR4 is immune to
this problem has ever been published. In addition the Target
Row Refresh command is not part of the JEDEC DDR4
specification however it is part of the LPDDR4 specification
which does not help servers.

Figure 3: Open Compute Server being tested for Row

Hammer failures

Lastly engineers may choose to identify the source code

creating the excessive ACTIVATE commands and rewrite the

code to remedy the situation. Not using the CFLUSH

11

 http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-

Kaczmarski-Optymalna.pdf page 13

command or lengthen loops that accessed shared semaphores

are a few strategies that can be employed.

VII. SUMMARY

DDR3 memory is a critical part of the world’s cloud
computing strategy and today’s servers have an extensive
amount of DDR3 memory. The studies have shown a potential
for millions of Row Hammer failures per system. Given the
vast amount of DDR3 memory in today’s systems failures
should clearly be a concern. This known failure mechanism
can lead to undetected data corruption, reliability issues and
security breaches. Current mitigation strategies, for deployed
systems, are impractical, expensive or just reduce the statistical
likelihood. A strategy to determine if applications even create
the Row Hammer failure should be considered. Understanding
if an application is at risk can reduce the pressure to implement
unneeded, expensive and time consuming mitigation strategies
saving organizations millions of dollars. If applications are
shown to be at risk then steps can be taken to upgrade
hardware, rewrite the application and provide warnings to the
field that such failures might occur.

http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf
http://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf

